Indocyanine green fluorescence in second near-infrared (NIR-II) window

نویسندگان

  • Zbigniew Starosolski
  • Rohan Bhavane
  • Ketan B Ghaghada
  • Sanjeev A Vasudevan
  • Alexander Kaay
  • Ananth Annapragada
چکیده

Indocyanine green (ICG), a FDA approved near infrared (NIR) fluorescent agent, is used in the clinic for a variety of applications including lymphangiography, intra-operative lymph node identification, tumor imaging, superficial vascular imaging, and marking ischemic tissues. These applications operate in the so-called "NIR-I" window (700-900 nm). Recently, imaging in the "NIR-II" window (1000-1700 nm) has attracted attention since, at longer wavelengths, photon absorption, and scattering effects by tissue components are reduced, making it possible to image deeper into the underlying tissue. Agents for NIR-II imaging are, however, still in pre-clinical development. In this study, we investigated ICG as a NIR-II dye. The absorbance and NIR-II fluorescence emission of ICG were measured in different media (PBS, plasma and ethanol) for a range of ICG concentrations. In vitro and in vivo testing were performed using a custom-built spectral NIR assembly to facilitate simultaneous imaging in NIR-I and NIR-II window. In vitro studies using ICG were performed using capillary tubes (as a simulation of blood vessels) embedded in Intralipid solution and tissue phantoms to evaluate depth of tissue penetration in NIR-I and NIR-II window. In vivo imaging using ICG was performed in nude mice to evaluate vascular visualization in the hind limb in the NIR-I and II windows. Contrast-to-noise ratios (CNR) were calculated for comparison of image quality in NIR-I and NIR-II window. ICG exhibited significant fluorescence emission in the NIR-II window and this emission (similar to the absorption profile) is substantially affected by the environment of the ICG molecules. In vivo imaging further confirmed the utility of ICG as a fluorescent dye in the NIR-II domain, with the CNR values being ~2 times those in the NIR-I window. The availability of an FDA approved imaging agent could accelerate the clinical translation of NIR-II imaging technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.

Fluorescent imaging in the second near-infrared window (NIR II, 1-1.4 μm) holds much promise due to minimal autofluorescence and tissue scattering. Here, using well-functionalized biocompatible single-walled carbon nanotubes (SWNTs) as NIR II fluorescent imaging agents, we performed high-frame-rate video imaging of mice during intravenous injection of SWNTs and investigated the path of SWNTs th...

متن کامل

Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update.

Near-infrared (NIR) fluorescence imaging clinical studies have been reported in the literature with six different devices that employ various doses of indocyanine green (ICG) as a non-specific contrast agent. To date, clinical applications range from (i) angiography, intraoperative assessment of vessel patency, and tumor/metastasis delineation following intravenous administration of ICG, and (i...

متن کامل

Intraoperative imaging identifies thymoma margins following neoadjuvant chemotherapy

Near infrared (NIR) molecular imaging is useful to identify tumor margins during surgery; however, the value of this technology has not been evaluated for tumors that have been pre-treated with chemotherapy. We hypothesized that NIR molecular imaging could locate mediastinal tumor margins in a murine model after neoadjuvant chemotherapy. Flank thymomas were established on mice. Two separate exp...

متن کامل

Structure-Inherent Targeting of Near-Infrared Fluorophores for Image-Guided Surgery

Although various clinical imaging modalities have been developed to visualize internal body structures and detect abnormal tissues prior to surgical procedures, most medical imaging modalities do not provide disease-specific images in real-time. Optical imaging can provide the surgeon with real-time visualization of the surgical field for intraoperative image-guided surgery. Imaging in the near...

متن کامل

The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma

INTRODUCTION Fluorescence-guided surgery has emerged as a powerful tool to detect, localize and resect tumors in the operative setting. Our laboratory has pioneered a novel way to administer an FDA-approved near-infrared (NIR) contrast agent to help surgeons with this task. This technique, coined Second Window ICG, exploits the natural permeability of tumor vasculature and its poor clearance to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017